

Htek IP Phones 802.1x Guide

Version 2.0.4.4.24 Feb. 2018

Table of Contents

About 802.1x
Htek Phone compatible with 802.1x
802.1x Settings5
Configuration files for 802.1x5
Applying the Configuration file to your phone6
Configuring 802.1x via web interface7
Configuring 802.1x on LCD GUI10
802.1x Authentication Process:
Troubleshooting16
Why doesn't the IP phone pass 802.1X authentication?
Appendix A: Glossary
Appendix B: 802.1X Authentication Process
A Successful Authentication Using EAP-MD5 Protocol17
A Successful Authentication Using EAP-TLS Protocol18
A Successful Authentication Using EAP-PEAP/MSCHAPv2 Protocol20
A Successful Authentication Using other Protocols
Customer Feedback23

l-ltek

About 802.1x

IEEE 802.1X is an IEEE Standard for port-based Network Access Control (PNAC). It is part of the IEEE 802.1 group of networking protocols. It provides an authentication mechanism to devices wishing to attach to a LAN or WLAN.

IEEE 802.1X defines the encapsulation of the Extensible Authentication Protocol (EAP) over IEEE 802, which is known as "EAP over LAN" or EAPOL. EAPOL was originally designed for IEEE 802.3 Ethernet in 802.1X-2001, but was clarified to suit other IEEE 802 LAN technologies such as IEEE 802.11 wireless and Fiber Distributed Data Interface (ISO 9314-2) in 802.1X-2004.

The 802.1x protocal protects the net be not accessed by the device which is not authorized. An analogy to this is providing a valid visa at the airport's arrival immigration before being allowed to enter the country. With 802.1X port-based authentication, the supplicant provides credentials, such as user name/password or digital certificate, to the authenticator, and the authenticator forwards the credentials to the authentication server for verification. If the authentication server determines the credentials are valid, the supplicant (client device) is allowed to access resources located on the protected side of the network.

Internet or other resources

Htek Phone compatible with 802.1x

802.1X is the most widely accepted form of port-based network access control in use and is available on Htek IP Phones. Htek IP Phones support 802.1X authentication based on EAP-MD5, EAP-TLS, EAP-PEAP/MSCHAPv2, EAP-TTLS/EAP-MSCHAPv2, EAP-PEAP/GTC, EAP-TTLS/EAP-GTC and EAP-FAST protocols.

The table below lists the protocols supported by Htek IP phones with different versions.

Authentication Protocal	IP Phone Models	Firmware version
EAP-MD5	UC802, UC802T, UC803, UC803T, UC804, UC804T, UC804G, UC806, UC806T, UC806G, UC840, UC842, UC860, UC862	Firmware version 1.0.3.97 or later
	UC902, UC903, UC912, UC912G, UC923, UC924, UC926, UC924E, UC926E	Firmware version 2.0.3.97 or later
EAP-PEAP/MSCHAPV2	UC802, UC802T, UC803, UC803T, UC804, UC804T, UC804G, UC806, UC806T, UC806G, UC840, UC842, UC860, UC862	Firmware version 1.0.3.98 or later
	UC902, UC903, UC912, UC912G, UC923, UC924, UC926, UC924E, UC926E	Firmware version 2.0.3.98 or later
EAP-TTLS/EAP-MSCHAPv2	UC802, UC802T, UC803, UC803T, UC804, UC804T, UC804G, UC806, UC806T, UC806G, UC840, UC842, UC860, UC862	Firmware version 1.0.3.98 or later
	UC902, UC903, UC912, UC912G, UC923, UC924, UC926, UC924E, UC926E	Firmware version 2.0.3.98 or later
EAP-PEAP/GTC	UC802, UC802T, UC803, UC803T, UC804, UC804T, UC804G, UC806, UC806T, UC806G, UC840, UC842, UC860, UC862	Firmware version 1.0.3.98 or later
	UC902, UC903, UC912, UC912G, UC923, UC924, UC926, UC924E, UC926E	Firmware version 2.0.3.98 or later
EAP-TTLS/EAP-GTC	UC802, UC802T, UC803, UC803T, UC804, UC804T, UC804G, UC806, UC806T, UC806G, UC840, UC842, UC860, UC862	Firmware version 1.0.3.98 or later
	UC902, UC903, UC912, UC912G, UC923, UC924, UC926, UC924E, UC926E	Firmware version 2.0.3.98 or later
EAP-FAST	UC802, UC802T, UC803, UC803T, UC804, UC804T, UC804G, UC806, UC806T, UC806G, UC840, UC842, UC860, UC862	Firmware version 1.0.3.98 or later
	UC902, UC903, UC912, UC912G, UC923, UC924, UC926, UC924E, UC926E	Firmware version 2.0.3.98 or later

Htek IP Phone UC802, UC803, UC804, UC804T, UC806, UC806T, UC840, UC860 support 802.1x as a supplicant, both Pass-thru Mode and Pass-thru Mode with Proxy Logoff. When the device is disconnected from the IP Phone PC port, the Htek IP Phone can provide additional security by sending an EAPOL Logoff message to the Ethernet switch. The proxy logoff will prevents another device from using the port without first authenticating via 802.1x.

802.1x Settings

The 802.1x authentication is disabled on Htek IP Phone by default, you need configure it by three ways:

Configuring 802.1x using configuration files.

Configuring 802.1x via web interface.

Configuring 802.1x via LCD interface.

The first way can be used to autoprovisioning. When you configure 802.1x on the LCD please make sure the phone has its own useful certificate in it. Otherwise you need upload the certificate via web interface.

Configuration files for 802.1x

Web Setting	Permitted	Descriptions	Paramotor
Path	Values	Descriptions	Farameter
Network→Ad vanced→802 .1x Mode	Number: 0,1,2,3,4,5,6, 7	802.1x Mode: 0 - Disable 1 - EAP-MD5 2 - EAP-TLS 3 - EAP-PEAP/MSCHAPv2 4 - EAP-TTLS/EAP-MSCHAPv2 5 - EAP-PEAP/GTC 6 - EAP-TTLS/EAP-GTC 7 - EAP-FAST	P8626
Network→Ad vanced→Ide ntity	String within 31 characters	The user name of 802.1x account	P8627
Network→Ad vanced→MD 5 Password	String within 31 characters	The password for account when using MD5 mode.	P8628
Management →Autoprovis ion→802.1x CA cert URL	URL within 255 characters	The URL locate to your CA cert. The CA cert must be .crt or .pem format.	P20987
Management →Autoprovis ion→802.1x DEV cert URL	URL within 255 characters	The URL locate to your device cert. The device cert must be .pem format.	P20988

1. The following table shows the parameters for 802.1x

Configure your custom setting in your condfiguration file, for example:

<!--Network/Advance/802.1X-->

<P8626 para="802.1XMode">2</P8626> <P8627 para="Identity">wirelessuser</P8627> <P8628 para="MD5Password" />

.

<P20987 para="802.1x CA cert URL">http://192.168.0.54/ca.crt</P20987> <P20988 para="802.1x DEV cert URL">http://192.168.0.54/device.pem</P20988>

When the phone loads the configuration file, it will try to get the cert from the server you have set. Ensure the cert files is stored on your server.

Applying the Configuration file to your phone

Once you have edited the configuration file (cfgmac.xml e.g. cfg001fc11a0001.xml) using the introduced parameters. You can do as follow to ensure the file is effective on your phone.

- 1. Connect your phone to a network without 802.1x.
- Log on the phone web, upload your configuration file. Access Management→Configuration, choose your configuration file then upload.

E l-Itek	Home Account Ne	twork Function Keys Setting	Directory Management
Password	Configure File		NOTE
Upgrade	Download Device Xml Configuration	Download Xml File	Configure File:
Auto Provision Configuration	Restore Xml Configuration	Choose file No file chosen Restore Xml Configuration	You can save the phone's configuration file to a backup location, and also restore a backu configuration file
Trusted CA	Download Device Bin Configuration	Download Bin File	
Server CA Tools	Restore Bin Configuration	Choose file No file chosen Restore Bin Configuration	System Log: There are two ways to export the system log: download directly, or download by the Syslog server
Restart	Download User Bin Configuration	Download User Bin File	
Reboot	Delete User Configuration	Delete User File	
	• System Log		
	Download System Log	Download	
	Syslog Server		
	Syslog Level	NONE	
	SaveSet	Cancel	

Or perform the auto provisioning. Then the phone will reboot to make the settings effective.

For more information about auto provisioning, please refer to

<u>Htek UC8xx Series IP Phones Auto Provision User Guide V4 4 24.doc</u> and <u>Htek UC9xx Series IP Phones Auto Provision User Guide V4 4 24.doc</u>

Configuring 802.1x via web interface

- 1. Connect your phone to a network without 802.1x.
- 2. Log on your phone web page.
- 3. Access Network \rightarrow Advanced.
- 4. In the 802.1x block, select the desired protocol from the pull-down list of 802.1x Mode.
- I. If you select EAP-MD5:
- 1) Enter the user name for authentication in the Identity field.
- 2) Enter the password for authentication in the MD5 Password field.

802.1X	
802.1X Mode	EAP-MD5
Identity	wirelessuser
MD5 Password	••••••
CA Certificates	Choose file No file chosen
	Import
Device Certificates	Choose file No file chosen
	Import

II. If you select EAP-TLS:

- 1) Enter the user name for authentication in the Identity field.
- 2) Leave the MD5 Password field blank.
- In the CA Certificates field, click Choose file to select the desired CA certificate.(*.crt, *.pem) from your local system. And upload the file.
- 4) In the Device Certificates field, click Choose file to select the desired client certificate(*.pem) from your local system(the *.pem file must contain the certificate and key file both in it). Click Import to upload the certificate.

802.1X Mode	EAP-ILS •
Identity	wirelessuser
MD5 Password	••••••
04.0++*5++++	Choose file No file chosen
CACentincates	Import
Davias Cartificatos	Choose file No file chosen
Device Certificates	

III. If you select EAP-PEAP/MSCHAPv2:

- 1) Enter the user name for authentication in the Identity field.
- 2) Enter the password for authentication in the MD5 Password field.
- In the CA Certificates field, click Choose file to select the desired CA certificate(*.crt, *.pem) in your system. Click Import to upload the certificate.

• 802.1X	
802.1X Mode	EAP-PEAP/MSCHAPV2 <
Identity	wirelessuser
MD5 Password	•••••
CA Certificates	Choose file No file chosen
Device Certificates	Choose file No file chosen
	Import

IV. If you select EAP-TTLS/EAP-MSCHAPv2:

- 1) Enter the user name for authentication in the Identity field.
- 2) Enter the password for authentication in the MD5 Password field.
- In the CA Certificates field, click Choose file to select the desired CA certificate(*.crt, *.pem) from your local system. Click Import to upload the certificate.

• 802.1X	
802.1X Mode	EAP-TTLS/EAP-MSCHA ▼
Identity	wirelessuser
MD5 Password	•••••
CA Certificates	Choose file No file chosen
Device Certificates	Choose file No file chosen
	Import

V. If you select EAP-PEAP/GTC:

- 1) Enter the user name for authentication in the Identity field.
- 2) Enter the password for authentication in the MD5 Password field.
- In the CA Certificates field, click Choose file to select the desired CA certificate(*.crt, *.pem) from your local system. Click Import to upload the certificate.

• 802.1X	
802.1X Mode	EAP-PEAP/GTC •
Identity	wirelessuser
MD5 Password	•••••
CA Certificates	Choose file No file chosen
Device Certificates	Choose file No file chosen
	Import

VI. If you select EAP-TTLS/EAP-GTC:

- 1) Enter the user name for authentication in the Identity field.
- 2) Enter the password for authentication in the MD5 Password field.
- In the CA Certificates field, click Choose file to select the desired CA certificate(*.crt, *.pem) from your local system. Click Import to upload the certificate.

• 802.1X	
802.1X Mode	EAP-TTLS/EAP-GTC V
Identity	wirelessuser
MD5 Password	
CA Certificates	Choose file No file chosen
Device Certificates	Choose file No file chosen
	Import

VII. If you select EAP-FAST:

- 1) Enter the user name for authentication in the Identity field.
- 2) Enter the password for authentication in the MD5 Password field.
- In the CA Certificates field, click Choose file to select the desired CA certificate(*.crt, *.pem)from your local system. Click Import to upload the certificate.

• 802.1X	
802.1X Mode	EAP-FAST 🔻
Identity	wirelessuser
MD5 Password	
CA Certificates	Choose file No file chosen
Device Certificates	Choose file No file chosen
	Import

- 5. Click Saveset to accept the change.
- 6. A alert box will remind you the saving change will make the phone reboot.
- 7. Click OK to reboot the phone.
- 8. After phone reboot, connect the phone to the network with 802.1x-endabled.

Configuring 802.1x on LCD GUI

If you select EAP-PEAP/MSCHAPv2, EAP-TTLS/EAP-MSCHAPv2, EAP-PEAP/GTC, EAP-TTLS/EAP-GTC or EAP-FAST mode, you should upload CA certificate via loading the configuration files or via web user interface.

If you select EAP-TLS mode, you should upload CA certificate and device certificate via loading the configuration files or via web user interface.

To configure the 802.1x on the LCD GUI:

- Press Menu→Settings→Advanced Setting(default password: admin)→ Network →802.1x
- 2. Press > or , or the Switch soft key to select the desired value from the 802.1x Mode field.
- I. If you select EAP-MD5:

- 1) Enter the user name for authentication in the Identity field.
- 2) Enter the password for authentication in the MD5 password field.
- II. If you select EAP-TIS:

- 1) Enter the user name for authentication in the Identity field.
- 2) Leave the MD5 Password field blank.

3. Press Save soft key or to save your change.

Once you save the change, the LCD will alert:

WAR	IING		
Sy	stem will resta	rt, Are you sur	e ?
Cancel			ОК

Press OK, or it will restart automatically after 5 seconds.

802.1x Authentication Process:

When the phone is 802.1x enabled and is connected into the network 802.1x enabled. The 802.1x authentication process is divided into two basic stages:

Pre-authentication

The 802.1X pre-authentication process begins with the IP phone that contains a supplicant service used for negotiation and authentication. When the IP phone connects to an unauthorized port, the authenticator blocks the IP phone from connecting to the network. Using one of the authentication protocols, the authenticator establishes a security negotiation with the IP phone and creates an 802.1X session. The IP phone provides its authentication information for the authenticator, and then the authenticator forwards the information to the authentication server.

Authentication

After the authentication server authenticates the IP phone, the authentication server initiates the authentication stage of the process. During this phase, the authenticator facilitates an exchange of keys between the IP phone and the authentication server. After these keys are established, the authenticator grants the IP phone access to the protected network on an authorized port.

The following figure summarizes an implementation of the 802.1X authentication process using a **RADIUS** server as the authentication server:

For more details about the 802.1x authentication process using EAP-MD5, EAP-TLS, EAP-PEAP/MSCHAPv2, EAP-TTLS/EAP-MSCHAPv2, EAP-PEAP/GTC, EAP-TTLS/EAP-GTC and EAP-FAST protocols, refer to <u>Appendix B: 802.1X</u>

Authentication Process.

The following screenshot of the Wireshark shows a sample of a successful authentication process using the EAP-MD5 protocol:

Time	Source	Destination	Protocol	Length	Info
7 6.710282	HanlongT_1b:55:31	Nearest			Start
11 10.148667	CiscoInc_1f:b2:87	Nearest	EAP	60	Request, Identity
12 10.152022	HanlongT_1b:55:31	Nearest	EAP	60	Response, Identity
13 10.155179	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60	Request, Identity
14 10.156905	HanlongT_1b:55:31	Nearest	EAP	60	Response, Identity
15 10.163665	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60	Request, MD5-Challenge EAP (EAP-MD5-CHALLENG
16 10.195550	HanlongT_1b:55:31	Nearest	EAP	60	Response, MD5-Challenge EAP (EAP-MD5-CHALLEN
20 10.337193	CiscoInc 1f:b2:87	HanlongT 1b:55:31	EAP	60	Success

The following screenshot of the Wireshark shows a sample of a successful authentication process using the EAP-TLS protocol:

eap or eapol				×					
o. Tine	Source	Destination	Protocol	Length Info					
15 15.840064	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Identity					
16 15.843012	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity					
18 15.861578	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Cisco Wireless EAP / Lightweight EAP (EAP-LEAP)					
19 15.863797	HanlongT_1b:55:31	Nearest	EAP	60 Response, Legacy Nak (Response Only)					
20 15.869959	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, TLS EAP (EAP-TLS)					
21 15.890646	HanlongT_1b:55:31	Nearest	TLSv1	251 Client Hello					
22 15.903427	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	1030 Server Hello, Certificate, Certificate Request, Server Hello Done					
23 15.904261	HanlongT_1b:55:31	Nearest	EAP	60 Response, TLS EAP (EAP-TLS)					
24 15.912268	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	418 Server Hello, Certificate, Certificate Request, Server Hello Done					
25 15.967316	HanlongT_1b:55:31	Nearest	TLSv1	1426 Certificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted Handshake Message					
26 15.973901	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, TLS EAP (EAP-TLS)					
27 15.977802	HanlongT_1b:55:31	Nearest	TLSv1	281 Certificate, Client Key Exchange, Certificate Verify, Change Cipher Spec, Encrypted Handshake Message					
28 16.005984	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	898 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message					
29 16.014350	HanlongT_1b:55:31	Nearest	EAP	60 Response, TLS EAP (EAP-TLS)					
30 16.040706	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Success					

The following screenshot of the Wireshark shows a sample of a successful authentication process using the EAP-PEAP/MSCHAPv2 protocol:

e	ap or eapol				
No.	Time	Source	Destination	Protocol	Length Info
	2 1.015773	CiscoInc_1f:b2:87	Nearest	EAP	60 Request, Identity
	3 1.020653	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
Г	4 1.024439	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Identity
	5 1.026082	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
	6 1.050366	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Protected EAP (EAP-PEAP)
	7 1.064909	HanlongT_1b:55:31	Nearest	TLSv1	251 Client Hello
	8 1.117661	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	1030 Server Hello, Certificate, Server Hello Done
	9 1.120828	HanlongT_1b:55:31	Nearest	EAP	60 Response, Protected EAP (EAP-PEAP)
	10 1.131457	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	408 Server Hello, Certificate, Server Hello Done
	11 1.160916	HanlongT_1b:55:31	Nearest	TLSv1	222 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	12 1.538084	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	290 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message
	13 1.550774	HanlongT_1b:55:31	Nearest	EAP	60 Response, Protected EAP (EAP-PEAP)
	14 1.559110	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	61 Application Data
	15 1.564249	HanlongT_1b:55:31	Nearest	TLSv1	114 Application Data, Application Data
	16 1.611001	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	93 Application Data
	17 1.631124	HanlongT_1b:55:31	Nearest	TLSv1	162 Application Data, Application Data
	18 1.770664	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	109 Application Data
	19 1.779159	HanlongT_1b:55:31	Nearest	TLSv1	98 Application Data, Application Data
L	20 1.789300	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	61 Application Data
	21 1.792515	HanlongT_1b:55:31	Nearest	EAP	60 Response, Protected EAP (EAP-PEAP)
	36 2.956476	CiscoInc 1f:b2:87	HanlongT_1b:55:31	EAP	60 Success

The following screenshot of the Wireshark shows a sample of a successful authentication process using the EAP-TTLS/EAP-MSCHAPv2 protocol:

e aj) or eapol				
No.	Time	Source	Destination	Protocol	Length Info
			Nearest		60 Start
	13 19.358549	CiscoInc_1f:b2:87	Nearest	EAP	60 Request, Identity
	14 19.361612	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
	15 19.365446	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Identity
	16 19.367021	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
	17 19.374419	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, MD5-Challenge EAP (EAP-MD5-CHALLENGE)
	18 19.376808	HanlongT_1b:55:31	Nearest		60 Response, Legacy Nak (Response Only)
	19 19.387201	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Tunneled TLS EAP (EAP-TTLS)
	20 19.399401	HanlongT_1b:55:31	Nearest	TLSv1	251 Client Hello
	21 19.412200	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	1042 Server Hello, Certificate, Server Key Exchange, Server Hello Done
	22 19.413009	HanlongT_1b:55:31	Nearest	EAP	60 Response, Tunneled TLS EAP (EAP-TTLS)
	23 19.421025	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	808 Server Hello, Certificate, Server Key Exchange, Server Hello Done
	24 19.570162	HanlongT_1b:55:31	Nearest	TLSv1	222 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	25 19.577107	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	87 Change Cipher Spec, Encrypted Handshake Message
	26 19.595035	HanlongT_1b:55:31	Nearest	TLSv1	210 Application Data, Application Data
	27 19.599491	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	113 Application Data
	28 19.609536	HanlongT_1b:55:31	Nearest	EAP	60 Response, Tunneled TLS EAP (EAP-TTLS)
	36 20.171398	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Success

The following screenshot of the Wireshark shows a sample of a successful authentication process using the EAP-PEAP/GTC protocol:

e 🔍	ap or eapol				
No.	Time	Source	Destination	Protocol	Length Info
	7 6.690306	HanlongT_1b:55:31	Nearest	EAPOL	60 Start
	9 7.542792	CiscoInc_1f:b2:87	Nearest	EAP	60 Request, Identity
	10 7.545809	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
Г	11 7.549511	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Identity
	12 7.551116	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
	13 7.573432	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Protected EAP (EAP-PEAP)
	14 7.586233	HanlongT_1b:55:31	Nearest	TLSv1	251 Client Hello
	15 7.596069	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	1030 Server Hello, Certificate, Server Hello Done
	16 7.596961	HanlongT_1b:55:31	Nearest	EAP	60 Response, Protected EAP (EAP-PEAP)
	17 7.610169	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	408 Server Hello, Certificate, Server Hello Done
	18 7.633753	HanlongT_1b:55:31	Nearest	TLSv1	222 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	19 7.655046	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	290 New Session Ticket, Change Cipher Spec, Encrypted Handshake Message
	20 7.662122	HanlongT_1b:55:31	Nearest	EAP	60 Response, Protected EAP (EAP-PEAP)
	21 7.669037	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	61 Application Data
	22 7.674257	HanlongT_1b:55:31	Nearest	TLSv1	114 Application Data, Application Data
	23 7.686094	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	93 Application Data
	24 7.707457	HanlongT_1b:55:31	Nearest	TLSv1	98 Application Data, Application Data
	25 8.742169	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	77 Application Data
	26 8.746954	HanlongT_1b:55:31	Nearest	TLSv1	114 Application Data, Application Data
L	27 8.803647	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	61 Application Data
	28 8.807033	HanlongT_1b:55:31	Nearest		60 Response, Protected EAP (EAP-PEAP)
	42 9,595087	CiscoInc 1f:b2:87	HanlongT 1b:55:31	EAP	60 Success

The following screenshot of the Wireshark shows a sample of a successful authentication process using the EAP-TTLS/EAP-GTC protocol:

eap	or eapol				
No.	Time	Source	Destination	Protocol	Length Info
	9 30.132824	HanlongT_1b:55:31	Nearest		60 Start
	13 34.609722	CiscoInc_1f:b2:87	Nearest	EAP	60 Request, Identity
	14 34.620915	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
	15 34.627314	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Identity
	16 34.629027	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
	17 34.642122	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, MD5-Challenge EAP (EAP-MD5-CHALLENGE)
	18 34.644422	HanlongT_1b:55:31	Nearest	EAP	60 Response, Legacy Nak (Response Only)
	19 34.649662	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Tunneled TLS EAP (EAP-TTLS)
	20 34.664441	HanlongT_1b:55:31	Nearest	TLSv1	251 Client Hello
	21 34.680836	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	1042 Server Hello, Certificate, Server Key Exchange, Server Hello Done
	22 34.681537	HanlongT_1b:55:31	Nearest	EAP	60 Response, Tunneled TLS EAP (EAP-TTLS)
	23 34.689347	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	808 Server Hello, Certificate, Server Key Exchange, Server Hello Done
	24 34.839092	HanlongT_1b:55:31	Nearest	TLSv1	222 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	25 34.846213	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	87 Change Cipher Spec, Encrypted Handshake Message
	26 34.858099	HanlongT_1b:55:31	Nearest	TLSv1	130 Application Data, Application Data
	27 34.861840	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	97 Application Data
	28 34.872532	HanlongT_1b:55:31	Nearest	TLSv1	130 Application Data, Application Data
	35 35.433113	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Success

The following screenshot of the Wireshark shows a sample of a successful authentication process using the EAP-FAST protocol:

No.	Tine	Source	Destination	Protocol	Length Info
	7 6.690345	HanlongT_1b:55:31	Nearest	EAPOL	60 Start
	11 10.811265	CiscoInc_1f:b2:87	Nearest	EAP	60 Request, Identity
	12 10.814260	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
Г	13 10.817447	CiscoInc_1f:b2:87	HanlongT_1b:55:31	EAP	60 Request, Identity
	14 10.819019	HanlongT_1b:55:31	Nearest	EAP	60 Response, Identity
	15 11.923739	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	60 Ignored Unknown Record
	16 11.938639	HanlongT_1b:55:31	Nearest	TLSv1	89 Client Hello
	17 12.001052	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	1030 Server Hello, Certificate, Server Hello Done
	18 12.001862	HanlongT_1b:55:31	Nearest	EAP	60 Response, Flexible Authentication via Secure Tunneling EAP (EAP-FAST)
	19 12.012848	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	434 Server Hello, Certificate, Server Hello Done
	20 12.038407	HanlongT_1b:55:31	Nearest	TLSv1	222 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
	21 12.054698	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	83 Change Cipher Spec, Encrypted Handshake Message
	22 12.063180	HanlongT_1b:55:31	Nearest	EAP	60 Response, Flexible Authentication via Secure Tunneling EAP (EAP-FAST)
	23 12.074564	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	61 Application Data
	24 12.080026	HanlongT_1b:55:31	Nearest	TLSv1	77 Application Data
	25 12.086150	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	93 Application Data
	26 12.103596	HanlongT_1b:55:31	Nearest	TLSv1	125 Application Data
	27 12.115975	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	109 Application Data
	28 12.120503	HanlongT_1b:55:31	Nearest	TLSv1	61 Application Data
L	29 12.147850	CiscoInc_1f:b2:87	HanlongT_1b:55:31	TLSv1	125 Application Data
	30 12.157991	HanlongT_1b:55:31	Nearest	TLSv1	141 Application Data
	32 12.187505	CiscoInc 1f:b2:87	HanlongT 1b:55:31	EAP	60 Success

Troubleshooting

Why doesn't the IP phone pass 802.1X authentication?

Check the following several points in sequence:

- Ensure that the 802.1x authentication environment is operational.
- a) Connect another device(e.g., a computer) to the switch port.
- b) Check if the device is authenticated successfully, and an IP address is assigned to it.
 If the device fails the authentication, check the configurations on the switch and authentication server.
- Ensure that the user name and password configured on the phone are correct. If EAP-TLS, EAP-PEAP/MSCHAPv2, EAP-TTLS/EAP-MSCHAPv2, EAP-PEAP/GTC, EAP-TTLS/EAP-GTC and EAP-FAST protocols are used, ensure that the certificate uploaded to the phone is valid.
- a) Double click the certificate to check the validity time.
- b) Check if the time and date on the phone is within the validity time of the uploaded certificate. If not, re-generate a certificate and upload it into the phone.
- Ensure that the failure is not caused by network settings.
- a) Disable LLDP feature and manually configure a VLAN ID for the Internet port of the phone to check if the authentication is successful. If the phone is authenticated successfully, contact your network administrator to troubleshoot the LLDP-related problem.
- b) Disable VLAN feature on the phone to check if the authentication passes successfully.
 If the phone is authenticated successfully, capture the packet and feed back to your network administrator.
- Contact Htek FAE for support when the above steps cannot solve your problem.
- a) Capture the packet and export configurations of the phone, switch and authentication server.
- b) Provide the related information to Htek FAE.

Appendix A: Glossary

IEEE (Institute of Electrical and Electronics Engineers) - A professional association with its corporate office in New York City and its operations center in Piscataway, New Jersey. IEEE was formed in 1963 from the amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers. And it is dedicated to advancing technological innovation and excellence.

802.1x - An access protocol and authentication based on Client/Server. It can restrict unauthorized users / devices to access the LAN / WLAN through an access port (access port). Only after authentication, normal data can be smoothly through the Ethernet port.

EAP – An authentication framework frequently used in wireless networks and point-to-point connections.

TLS (Extensible Authentication Protocol) – An authentication framework which supports multiple authentication methods.

MD5 (Message-Digest Algorithm) – Only provides authentication of the EAP peer for the EAP server but not mutual authentication.

PEAP (Protected Extensible Authentication Protocol) – A protocol that encapsulates the EAP within an encrypted and authenticated TLS tunnel.

MSCHAPv2 (Microsoft Challenge Handshake Authentication Protocol version 2) – Provides for mutual authentication, but does not require a supplicant-side certificate.

TTLS (Tunneled Transport Layer Security) – Extends TLS to improve some weak points, but it does not require a supplicant-side certificate.

EAPOL (Extensible Authentication Protocol over Local Area Network) – A delivery mechanism and doesn't provide the actual authentication mechanisms.

Appendix B: 802.1X Authentication Process

A Successful Authentication Using EAP-MD5 Protocol

The following figure illustrates the scenario of a successful 802.1x authentication process using the EAP-MD5 protocol.

1. The supplicant sends an "EAPOL-Start" packet to the authenticator.

2. The authenticator responds with an "EAP-Request/Identity" packet to the supplicant.

3. The supplicant responds with an "EAP-Response/Identity" packet to the authenticator.

4. The authenticator strips the Ethernet header and encapsulates the remaining EAP frame in the RADIUS format, and then sends it to the authentication server.

5. The authentication server recognizes the packet as an EAP-MD5 type and sends back

a Challenge message to the authenticator.

6. The authenticator strips the authentication server's frame header, encapsulates the remaining EAP frame into the EAPOL format, and sends it to the supplicant.

7. The supplicant responds to the Challenge message.

8. The authenticator passes the response to the authentication server.

9. The authentication server validates the authentication information and sends an authentication success message.

10. The authenticator passes the successful message to the supplicant.

After the supplicant is authenticated successfully, the authenticator provides network access permissions. If the supplicant does not provide proper identification, the authentication server responds with a rejection message. The authenticator passes the message onto the supplicant and blocks access to the LAN.

A Successful Authentication Using EAP-TLS Protocol

The following figure illustrates the scenario of a successful 802.1x authentication process using the EAP-TLS protocol.

- a: Server Hello, Serve Certificate, Certificate Request, Server Hello Done
- b: Client Certificate, Client Key Exchange, Certificate verify, Change Cipher Spec
- c: Change Cipher Spec, Finished Handshake message
 - 1. The supplicant sends an "EAPOL-Start" packet to the authenticator.
 - 2. The authenticator responds with an "EAP-Request/Identity" packet to the supplicant.
 - 3. The supplicant responds with an "EAP-Response/Identity" packet to the authenticator.
 - 4. The authenticator strips the Ethernet header and encapsulates the remaining EAP frame in the RADIUS format, and then sends it to the authentication server.
 - 5. The authentication server recognizes the packet as an EAP-TLS type and sends an "EAP-Request" packet with a TLS start message to the authenticator.

6. The authenticator strips the authentication server's frame header, encapsulates the remaining EAP frame in the EAPOL format, and then sends it to the supplicant.

7. The supplicant responds with an "EAP-Response" packet containing a TLS client hello handshake message to the authenticator. The client hello message includes the TLS

version supported by the supplicant, a session ID, a random number and a set of cipher suites.

8. The authenticator passes the response to the authentication server.

9. The authentication server sends an "EAP-Request" packet to the authenticator. The packet includes a TLS server hello handshake message, a server certificate message, a certificate request message and a server hello done message.

10. The authenticator passes the request to the supplicant.

11. The supplicant responds with an "EAP-Response" packet to the authenticator. The packet includes a TLS change cipher spec message, a client certificate message, a client key exchange message and a certificate verify message.

12. The authenticator passes the response to the authentication server.

13. The authentication server sends an "EAP-Request" packet to the authenticator. The packet includes a TLS change cipher spec message and a finished handshake message. The change cipher spec message is sent to notify the authenticator that subsequent records will be protected under the newly negotiated cipher spec.

14. The authenticator passes the request to the supplicant.

15. The supplicant responds with an "EAP-Response" packet to the authenticator.

16. The authenticator passes the response to the authentication server.

17. The authentication server responds with a success message indicating the supplicant and the authentication server have successfully authenticated each other.

18. The authenticator passes the message to the supplicant.

After the supplicant is authenticated successfully, the authenticator provides network access permissions. If the supplicant does not provide proper identification, the authentication server responds with a rejection message. The authenticator passes the message to the supplicant and blocks access to the LAN.

A Successful Authentication Using

EAP-PEAP/MSCHAPv2 Protocol

The following figure illustrates the scenario of a successful 802.1x authentication process using the EAP-PEAP/MSCHAPv2 protocol.

Cli H-tek IP	ent Phone		Authe (Sw	nticator <i>i</i> itch)		Authentica	ite server
	1.EAPOL	-Start			I		
	2.EAP-Re	equest/Identity					
	3.EAP-Response/Identity			4.EAP-Response/Identity			
	6.EAP-Request/TLS Start			5.EAP-Request/TLS Start			
	7.EAP-Response/TLS Client Hello			8.EAP-Resp			
	10.EAP-Re	esponse/TLS a		9.EAP-Resp	onse/TLS a		
	▲ 11.EAP-Re	esponse/TLS b		12.EAP-Res	ponse/TLS b		
	14.EAP-R	esponse/TLS c		13.EAP-Response/TLS c			
	4 15.EAP-R€	esponse	•	16.EAP-Response			
	18. EAP-Re	equest/Identity		17.EAP-Request/Identity ←			
	▲ 19. EAP-Response/Identity		,	20. EAP-Response/Identity			
	22. EAP-Re	equest/EAP-MS Challenge	CHAP V2	21. EAP-Request/EAP-MS CHAP V2 Challenge			
	423. EAP-R	esponse/EAP-MS CHAP V2 Challenge		24. EAP-Response/EAP-MS (Challenge		CHAP V2	
	26. EAP-Request/EAP-MS CHAP V2 Challenge 27. EAP-Request/EAP-MS CHAP V2 ACK 30.EAP-Success		CHAP V2	25. EAP-Request/EAP-MS CHAP V2 Challenge			
			CHAP V2	28. EAP-Request/EAP-MS CHAP V2 ACK			
				29.EAP-Suc			
	Data communication			Data con	Data communication		

- a: Server Hello, Serve Certificate, Certificate Request, Server Hello Done
- b: Client Certificate, Client Key Exchange, Certificate verify, Change Cipher Spec

c: Change Cipher Spec, Finished Handshake message

1. The supplicant sends an "EAPOL-Start" packet to the authenticator.

2. The authenticator responds with an "EAP-Request/Identity" packet to the supplicant.

3. The supplicant responds with an "EAP-Response/Identity" packet to the authenticator.

4. The authenticator strips the Ethernet header and encapsulates the remaining EAP frame in the RADIUS format, and then sends it to the authentication server.

5. The authentication server recognizes the packet as a PEAP type and sends an "EAP-Request" packet with a PEAP start message to the authenticator.

6. The authenticator strips the authentication server's frame header, encapsulates the remaining EAP frame in the EAPOL format, and then sends it to the supplicant.

7. The supplicant responds with an "EAP-Respond" packet containing a TLS client hello handshake message to the authenticator. The TLS client hello message includes TLS version supported by the supplicant, a session ID, a random number and a set of cipher suites.

8. The authenticator passes the respond to the authentication server.

9. The authentication server sends an "EAP-Request" packet to the authenticator. The packet includes a TLS server hello handshake message, a server certificate message and a server hello done message.

10. The authenticator passes the request to the supplicant.

11. The supplicant responds with an "EAP-Response" packet to the authenticator. The packet includes a TLS change cipher spec message and a certificate verify message.

12. The authenticator passes the response to the authentication server.

13. The authentication server sends an "EAP-Request" packet to the authenticator. The packet includes a TLS change cipher spec message and a finished handshake message. The change cipher spec message is sent to notify the authenticator that subsequent records will be protected under the newly negotiated cipher spec.

14. The authenticator passes the request to the supplicant.

15. The supplicant responds with an "EAP-Response" packet to the authenticator.

16. The authenticator passes the response to the authentication server. The TLS tunnel is established.

17. The authentication server sends an "EAP-Request/Identity" packet to the authenticator.

18. The authenticator passes the request to the supplicant.

19. The supplicant responds with an "EAP-Response/Identity" packet to the authenticator.

20. The authenticator passes the response to the authentication server.

21. The authentication server sends an "EAP-Request" packet to the authenticator. The packet includes an MSCHAPv2 challenge message.

22. The authenticator passes the request to the supplicant.

23. The supplicant responds a challenge message to the authenticator.

24. The authenticator passes the message to the authentication server.

25. The authentication server sends a success message indicating that the supplicant provides proper identity.

26. The authenticator passes the message to the supplicant.

27. The supplicant responds with an ACK message to the authenticator.

28. The authenticator passes the respond message to the authentication server.

29. The authentication server sends a successful message to the authenticator.

30. The authenticator passes the message to the supplicant.

After the supplicant is authenticated successfully, the authenticator provides network access permissions. If the supplicant does not provide proper identification, the authentication server responds with a rejection message. The authenticator passes the message to the supplicant and blocks access to the LAN.

A Successful Authentication Using other Protocols

The **EAP-TTLS/EAP-MSCHAPv2**, **EAP-PEAP/GTC**, **EAP-TTLS/EAP-GTC**, **EAP-FAST** protocol authentication process is similar to the **EAP-PEAP/EAP-MSCHAPv2**. For more information, refer to the network resource.

Customer Feedback

We are striving to improve our documentation quality and we appreciate your feedback. Email your opinions and comments to support@Htek.com.